Archivo de la etiqueta: fisicas

Separación de Mezclas Cristalización y Decantación

Separación de mezclas.

Los métodos utilizados para la separación de mezclas y de disoluciones utilizan como base las propiedades físicas y químicas de los componentes de estas.

Estos métodos de separación de mezclas homogéneos que veras son.

Cristalización.

El método de cristalización es separar un soluto sólido para separarlo de un disolvente haciendo que cristalice el soluto, (inverso al proceso de la disolución


Este método se utiliza para separar una mezcla de sólidos que sean solubles en el mismo disolvente pero con curvas de solubilidad diferentes.

Una vez que la mezcla esté disuelta, puede calentarse para evaporar parte de disolvente y así concentrar la disolución.

Para el compuesto menos soluble la disolución llegará a la saturación debido a la eliminación de partes de disolvente y precipitará.

Todo esto puede irse precediendo sucesivamente e ir disolviendo de nuevo los distintos precipitados (esto recibiría el nombre de cristalización fraccionada) obtenidos para irlos purificando hasta conseguir separar totalmente de dos sólidos.

Cada nueva cristalización tiene un rendimiento menor, pero con este método puede alcanzarse el grado de pureza que se desee.

Normalmente, cuando se quieren separar impurezas de un material, como su concentración es baja la única sustancia que llega a saturación es la deseada y el precipitado es prácticamente puro.

La cristalización es el proceso inverso de la disolución.

Una forma simple de explicación seria la siguiente.

Técnica que consiste en hacer que se cristalice un soluto sólido con objeto de ser separado del disolvente en el que este disuelto. Para ello conviene evaporar parte del disolvente o dejar que e proceso ocurra a temperatura ambiente.

Si hay un enfriamiento rápido se obtiene pequeños cristales, cuando es lento los cristales son de mayor tamaño.

Destilación.

Destilación se utiliza para separar líquidos de una solución, tomándose como referentes las temperaturas de ebullición .

La destilación y la destilación fraccionada es el método utilizado cuando se quieren separar dos líquidos  y uno de ellos es más volátil que el otro.

Es también útil cuando ambos líquidos tengan temperaturas de ebullición parecida.

Cuando calentamos las mezcla de vapor que aparecen, se expresa el compuesto de  mayor porcentaje por el líquido más volátil.

Se recoge el vapor y se enfría, obteniéndose un líquido de concentración distinta al original.

La mezcla inicial ha cambiado también de composición y por tanto también de punto de ebullición.

La destilación fraccionada se utiliza cuando combinamos distintas destilaciones, y con esto puede conseguirse que sólo quede liquido menos volátil y evaporar completamente (y volver a condensar) el más volátil.

Metodos de Separación de mezclas “Inicio”

Fuerzas Intermoleculares

Fuerzas Intermoleculares

En el interior de una molécula los átomos se encuentran unidos por medio de fuerzas intramoleculares (lease: enlaces iónicos, metálicos o covalentes), estas fuerzas son las que se deben vencer para producir un cambio químico.

Estas fuerzas determinan las propiedades químicas de las sustancias.

Pero existen otras fuerzas intermoleculares que actúan sobre moléculas distintas o iones para que estos se atraigan o se repelan.

Estas fuerzas determinan las propiedades físicas de sustancias como por ejemplo:  el estado de agregación, también el punto de fusión como el de ebullición, sumemos a estos la densidad, solubilidad, tensión superficial etc.

Generalmente son fuerzas débiles aunque al ser muy numerosas su aporte resulta importante.

Fuerzas intermoleculares >Fuerzas ion-ion >Fuerzas ion – dipolo

Fuerzas dipolo – inducido >Fuerzas hidrofobicas

Fuerzas de Van der Waals >Fuerzas dipolo – dipolo >Puente de hidrógeno

Fuerzas dipolo – dipolo introducido > Fuerzas dipolo – dipolo instantáneo

dipolo introducido

EL ÁTOMO

EL ÁTOMO

Titulaciones

Acidos y bases

Protones

Historia del atomo

Electrones

1.- El átomo en la antigüedad Los filósofos griegos discutieron mucho acerca de la naturaleza de la materia y concluyeron que el mundo era más simple de lo que parecía.

Algunas de sus ideas de mayor relevancia fueron: Leucipo Demócrito En el siglo V a. C., Leucipo sostenía que había un sólo tipo de materia y pensaba que si dividíamos la materia en partes cada vez más pequeñas, obtendríamos un trozo que no se podría cortar más.

Demócrito llamó a estos trozos átomos (“sin división”). La filosofía atomista de Leucipo y Demócrito podía resumirse en:

1.- Los átomos son eternos, indivisibles, homogéneos e invisibles.

2.- Los átomos se diferencian en su forma y tamaño.

3.- Las propiedades de la materia varían según el agrupamiento de los átomos.

Empédocles En el siglo IV a. C., Empédocles postuló que la materia estaba formada por 4 elementos: tierra, aire, agua y fuego. Aristóteles, posteriormente, postula que la materia estaba formada por esos 4 elementos pero niega la idea de átomo, hecho que se mantuvo hasta 200 años después en el pensamiento de la humanidad.

1.1.- La teoría atómica de Dalton En 1808, John Dalton publicó su teoría atómica, que retomaba las antiguas ideas de Leucipo y de Demócrito. Según la teoría de Dalton:

1.- Los elementos están formados por partículas diminutas, indivisibles e inalterables llamadas átomos. Dalton estableció un sistema para designar a cada átomo de forma que se pudieran distinguir entre los distintos elementos:

2.- Los átomos de un mismo elemento son todos iguales entre sí en masa, tamaño y en el resto de las propiedades físicas o químicas.

Por el contrario, los átomos de elementos diferentes tienen distinta masa y propiedades.

3.- Los compuestos se forman por la unión de átomos de los correspondientes elementos según una relación numérica sencilla y constante. De la teoría atómica de Dalton se pueden obtener las siguientes definiciones: –

Un átomo es la partícula más pequeña de un elemento que conserva sus propiedades. – Un elemento es una sustancia pura que está formada por átomos iguales. – Un compuesto es una sustancia que está formada por átomos distintos combinados en una relación numérica sencilla y constante.

2.- El átomo es divisible Una vez aceptada la teoría atómica de la materia, los fenómenos de electrización y electrólisis pusieron de manifiesto, por un lado, la naturaleza eléctrica de la materia y, por otro, que el átomo era divisible; es decir, que estaba formado por otras partículas fundamentales más pequeñas.

En esta página puedes ver ejemplos sobre fenómenos de electrización. Los fenómenos eléctricos son una manifestación de su carga eléctrica.

La unidad de carga eléctrica en el SI es el culombio (C). Hay 2 tipos de cargas eléctricas: positiva y negativa. dos cuerpos que hayan adquirido una carga del mismo tipo se repelen, mientras que si poseen carga de distinto tipo se atraen.

La materia es eléctricamente neutra, es decir, tiene la misma cantidad de cada tipo de carga. cuando adquiere carga, tanto positiva como negativa, es porque tiene más cantidad de un tipo que de otro. A finales del siglo XIX y principios del XX, una serie de experimentos permitieron identificar las partículas responsables de la carga negativa (el electrón) y de la carga positiva (el proton). Estos experimentos proporcionaron los datos siguientes sobre la estructura de la materia: –

El átomo contiene partículas materiales subatómicas. – Los electrones tienen carga eléctrica negativa y masa. Cada electrón posee una carga eléctrica elemental. –

Los protones tienen carga eléctrica positiva y mayor masa. – Como el átomo es eléctricamente neutro, hay que suponer que el número de cargas eléctricas negativas (electrones) es igual al número de cargas positivas (protones).

3.- Modelos atómicos En Ciencia, un modelo intenta explicar una teoría mediante una comparación. Un modelo será tanto más perfecto cuanto más claramente explique los hechos experimentales. El modelo es válido mientras explica lo que ocurre en los experimentos; en el momento en que falla, hay que modificarlo.

3.1.- Modelo atómico de Thomson Por ser tan pequeña la masa de los electrones, el físico inglés J. J. Thomson supuso, en 1904, que la mayor parte de la masa del átomo correspondía a la carga positiva, que, por tanto, debía ocupar la mayor parte del volumen atómico.

Thomson imaginó el átomo como una especie de esfera positiva continua en la que se encuentran incrustados los electrones (como las pasas en un pudin). Este modelo permitía explicar varios fenómenos experimentales como la electrización y la formación de iones. –

La electrización: Es el exceso o la deficiencia de electrones que tiene un cuerpo y es la responsable de su carga eléctrica negativa o positiva. – La formación de iones: Un ion es un átomo que ha ganado o ha perdido electrones. Si gana electrones tiene carga neta negativa y se llama anión y si pierde electrones tiene carga neta positiva y se llama catión.

3.2.- Modelo atómico de Rutherford El modelo de Thomson tuvo una gran aceptación hasta que, en 1911, el químico y físico inglés Ernest Rutherford y sus colaboradores llevaron a cabo el “Experimento de Rutherford”. En esta página puedes ver cómo este experimento ofrecía unos resultados que no podían explicarse con el modelo de átomo que había propuesto Thomson y, por tanto, había que cambiar el modelo.

En el experimento se bombardeaba una fina lámina de oro con partículas alfa (positivas) procedentes de un material radiactivo y se observaba que: – La mayor parte de las partículas alfa atravesaban la lámina sin cambiar de dirección, como era de esperar. –

Algunas partículas alfa se desviaron considerablemente. – Unas pocas partículas alfa rebotaron hacia la fuente de emisión. Puedes ver el experimento en este vídeo. Aquí tienes otra versión interactiva del mismo experimento. El Modelo atómico de Rutherford o modelo nuclear establece que: –

El átomo tiene un núcleo central en el que están concentradas la carga positiva y casi toda la masa. – La carga positiva de los protones del núcleo se encuentra compensada por la carga negativa de los electrones, que están fuera del núcleo. –

El núcleo contiene, por tanto, protones en un número igual al de electrones del átomo. – Los electrones giran a mucha velocidad alrededor del núcleo y están separados de éste por una gran distancia.

3.3.- Los neutrones La masa de protones y electrones no coincidía con la masa total del átomo; por tanto, Rutherford supuso que tenía que haber otro tipo de partículas subatómicas en el núcleo de los átomos. Estas partículas fueron descubiertas en 1933 por

J. Chadwick. Al no tener carga eléctrica recibieron el nombre de neutrones. Los neutrones son partículas sin carga y de masa algo mayor que la masa de un protón.

3.4.- Estructura del átomo Según esto, el átomo quedó constituido así: – Una zona central o NÚCLEO donde se encuentra la carga total positiva (la de los protones) y la mayor parte de la masa del átomo, aportada por los protones y los neutrones. – Una zona externa o CORTEZA donde se hallan los electrones, que giran alrededor del núcleo. Hay los mismos electrones en la corteza que protones en el núcleo, por lo que el conjunto del átomo es eléctricamente neutro.

Constantes Químicas y Fisicas

CONSTANTES FÍSICAS

Aceleración de gravedad (valor promedio):  g  =  9,8 [m/s2]

Carga del electrón:  e  =  -1,60´10-19 [C]

Constante de Boltzmann:  k  =1,38´10-23 [J/°K]

Constante de gravitación universal:  G  =  6,67´10-11 [N-m2/kg2]

Constante de permeabilidad:  m0  =  4p´10-7 [H/m]  =  1,26´10-6 [H/m]

Constante de permitividad:  e0  =  8,85´10-12 [F/m]
Constante de Planck:  h  =  6,63´10-34 [J-s]
Constante de proporcionalidad:  K  =  9´109 [N-m2/C2]
Constante solar  =  1340 [W/m2]
Constante universal de los gases ideales:  R  =  0,082 [atm-l/mol-°K]  =  1,98 [cal/mol-°K]  =  8,32 [J/mol-°K]
Densidad del aire seco a 0°C y 1 [atm]  = 1,293 [kg/m3]
Densidad máxima del agua  = 1 [g/ml]  ( a  3,98°C y 1 [atm] )
Densidad media de la Tierra  = 5522 [kg/m3]  =  5,522 [kg/l]
Equivalente mecánico del calor:  J  =  4,19 [J/cal]
Longitud de onda del electrón según Compton: le  =  2,43´10-12 [m]
Masa de la Tierra  =  5,983´1024 [kg]
Masa del electrón en reposo: me  =  9,11´10-31 [kg]
Masa del neutrón en reposo: mn  =  1,67´10-27 [kg]
Masa del protón en reposo: mp  =  1,67´10-27 [k
Momento del dipolo magnético terrestre  = 6,4´1021 [A-m2]
Momento magnético del electrón  =  9,28´10-32 [J-m2/Wb]
Número de Avogadro:  No  =  6,02´1023 [mol-1]
Punto de congelación del agua  = 273,15 [°K]
Punto de ebullición del agua  = 373,15 [°K]
Punto triple del agua  = 273,16 [°K]
Radio de la primera órbita de Bohr en el átomo de hidrógeno: a0  =  5,29´10-11 [m]
Radio ecuatorial de la Tierra =  6,378´106 [m]
Radio polar de la Tierra  = 6,357´106 [m]
Radio promedio de la Tierra  = 6,371´106 [m]
Relación masa-energía  = 8,99´1016 [m2/s2]
Velocidad angular media de rotación de la Tierra  =  7,29´10-5 [s-1]
Velocidad de la luz en el vacío:  c  =  3,00´108 [m/s]
Velocidad del sonido en el aire seco a 0 [°C] y 1 [atm]  =331,4 [m/s]
Velocidad orbital media de la Tierra  = 29.770 [m/s]
Volumen de la Tierra  = 1,087´1021 [m3]
Volumen patrón de los gases ideales a 0 [°C] y 1 [atm]  =  0,0224 [m3]  =  22,4 [l]

CONSTANTES QUÍMICAS

Carga del electrón:  e  =  -1,60´10-19 [C]
Constante de Boltzmann: k  =  1,38´10-23 [J/°K]
Constante de Planck:  h  =  6,63´10-34 [J-s]
Constante universal de los gases ideales:  R  =  0,082 [atm-l/mol-°K]  =  1,98 [cal/mol-°K]  =  8,32 [J/mol-°K]
Densidad del aire seco a 0°C y 1 [atm]  = 1,293 [kg/m3]
Densidad máxima del agua  = 1 [g/ml]  ( a  3,98°C y 1 [atm] )
Longitud de onda del electrón según Compton:  le  =  2,43´10-12 [m]
Masa del electrón en reposo:   me  =  9,11´10-31 [kg]
Masa del neutrón en reposo:   mn  =  1,67´10-27 [kg]
Masa del protón en reposo:  mp  =  1,67´10-27 [kg]
Momento magnético del electrón  = 9,28´10-32 [J-m2/Wb
Número de Avogadro:  No  =  6,02´1023 [mol-1]
Punto de congelación del agua  = 273,15 [°K]
Punto de ebullición del agua  = 373,15 [°K]
Punto triple del agua  = 273,16 [°K]
Radio de la primera órbita de Bohr en el átomo de hidrógeno: a0  =  5,29´10-11 [m]
Relación masa-energía  =  8,99´1016 [m2/s2]
Volumen patrón de los gases ideales a 0 [°C] y 1 [atm]  = 0,0224 [m3]  =  22,4 [l]



Métodos de separacion de mezclas

Métodos de separación de mezclas:

Veremos aquí los diferentes métodos de separación, de acuerdo a cada componente empezaremos por.

Métodos físicos: estos métodos son aquellos en los cuales la mano del hombre no interviene para que estos se produzcan, un caso común es el de sedimentación, si tu depositas una piedra en un liquido el solido rápidamente se sumergiría por el efecto de la gravedad.

Métodos mecánicos: Decantación, se aplica para separar una mezcla de líquidos o un solido insoluble de un liquido, en el caso de un solido se deja depositado por sedimentación en el fondo del recipiente y luego el liquido es retirado lentamente hacia otro recipiente quedando el solido depositado en el fondo del recipiente, ahora bien cuando los líquidos no miscibles estos líquidos al mezclarse tienen la propiedad de ir separándose en el recipiente, al comienzo quedan como un sistema homogéneo pero luego al separarse se puede sacar al liquido que quede en la parte superior, quedando el otro en el recipiente de origen.

Método de Filtración

Filtración: es aplicable para separar un solido insoluble de un liquido se emplea una malla porosa tipo colador, la mezcla se vierte sobre la malla quedando atrapada en ella el solido y en el otro recipiente se depositara el liquido, de ese modo quedan separados los dos componentes.

Para no confundirnos de métodos, las aplicaciones a través de materiales porosos como el papel filtro, algodón o arena se separan el sólido que se encuentra suspendido en un líquido.

De esta manera estos materiales son quienes permiten que  solamente pase el líquido,  reteniendo al sólido.

Evaporación: Aquí un solido soluble y un liquido por medio de temperatura de ebullición la cual evaporara completamente y luego por condensación se recuperara el liquido mientras que el solido quedara a modo de cristales pegado en las paredes del recipiente de donde podría ser recuperado.

Punto de ebullición: cuando un liquido a determinada temperatura se va evaporando. Todos los líquidos presentan diferentes puntos de ebullición.
Sublimación: Es para separar una mezcla de dos sólidos con una condición uno de ellos podría sublimarse, a esta mezcla se aplica una cantidad determinada de calor determinada produciendo los gases correspondientes a los elementos, estos vuelven a recuperarse en forma de sólidos al chocar sobre una superficie fría como una porcelana que contenga agua fría, de este modo los gases al condensarse se depositan en la base de la pieza de porcelana en forma de cristales.

Centrifugación: aquí como tantas ocasiones pondremos de ejemplo al talco como solido, para acelerar su sedimentación se aplica una fuerza centrifuga la cual acelera dicha sedimentación, el movimiento gravitacionál circular por su fuerza se logra la separación.

Destilación: esta separación de mezcla se aplica para separar una mezcla de mas de dos o mas líquidos miscibles, los líquidos como condición deben de tener por lo menos 5º de diferencia del punto de ebullición.

De esta forma se ira calentando hasta llegar al punto de ebullición del primer liquido, se mantendrá esta temperatura colocando o sacando el mechero para mantener la temperatura de ebullición, a modo de calor regulado de vaporización, cuando ya no se observa vapores se aumenta la temperatura al punto de ebullición del segundo liquido, podría ser repetitiva la operación según el número de líquidos que contenga la mezcla. Como iniciar cesión.

Los vapores que se producen pasan por un condensador o refrigerante de tal manera que los vapores se irán recuperando en recipientes.

Destilación: Técnica que se utilizada para purificar un líquido o bien separar los líquidos de una mezcla líquida.

Se  trabaja en dos etapas: estas son la transformación del líquido en vapor y condensación del vapor.

Destilación: Técnica utilizada para purificar un líquido o separar los líquidos de una mezcla líquida. Comprende dos etapas: transformación del líquido en vapor y condensación del vapor.

Decantación

LIQUIDO -LIQUIDO:

Líquidos de diferente densidad:                                     

Estos dejándolos en reposo sedimentan.

Información extra.

La información extra de la que dispongo es una breve descripción del método de decantación para separar mezcla heterogéneas, y las propiedades de los dos componentes empleados, el agua y el aceite.

La decantación

La decantación es un proceso físico de separación de mezclas, especial para separar mezclas heterogéneas, estas pueden ser exclusivamente líquido – líquido ó sólido – líquido.

Esta técnica se basa en la diferencia de densidades entre los dos componentes, que hace que dejándolos en reposo se separen quedando el más denso arriba y el más fluido abajo.

Para realizar esta técnica se utiliza como instrumento principal un embudo de decantación, que es de cristal y esta provisto de una llave en la parte inferior.

Como se realiza su extracción en esta técnica de separación, se basa en las diferentes afinidades de los componentes de las mezclas en dos solventes distintos y no solubles entre sí.

Es una técnica muy útil para aislar cada sustancia de sus fuentes naturales o de una mezcla de reacción.

La técnica de extracción simple es la más común y utiliza un embudo especial llamado embudo de decantación.

Tamización: en la imagen de abajo podemos apreciar claramente el método de separación por tamización.

El tamizado es un método de separación de los más sencillos, consiste en hacer pasar una mezcla de cualquier tipo de sólidos, de distinto tamaño, a través de el tamiz.

Los granos más pequeños atraviesan el tamiz y los más grandes son retenidos, de esta forma podrás separa dos o más sólidos, dependiendo tanto de dichos sólidos como el tamizador que utilizamos.


Cromatografía.

La Cromatografía es la separación de aquellos componentes de una mezcla que es homogénea.

Para ampliar este tema tienes que hacer clic aquí en Cromatografía

En el vídeo que pueden ver se aprecia claramente.

Gracias a todos mis amigos lectores y todo lo que creen que les falte saber, me lo comentan  un saludo.

Metodo de imantación

Puedes acceder al articulo original de imantación ingresando a este click en metodos de imantación

ATENCIÓN A TODOS LOS ESTUDIANTES:

VIENDO QUE SE REPITE LOS PEDIDOS DE AMPLIACIÓN DE ESTE TEMA LES ACLARO QUE AQUÍ DEBAJO ESTÁN LAS ENTRADAS A LOS ARTÍCULOS CON EL RESTO DE LOS MÉTODOS AMPLIADOS Y LOS QUE LES FALTEN, MÁS LOS POSTULADOS Y MODELOS, GRACIAS

Métodos de Separación de Mezclas: Parte A, Parte I, Parte II, Parte III

Cromatografia.

Decantación.

Destilacion.

Vaporisacion.

Separacon de Mezclas cristalizacion y decantacion

Separacion de Mezclas Cromatografia y Centrifugacion

Sublimación.

Metodos de separacion Cromatografia

Enlaces Hacia Postulados:

También les dejo algo que les sera de utilidad en los siguientes enlaces.

titulaciones, acidos y bases, protonesel nucleo de un atomo.

Desde ya gracias a todos por sus indicaciones, un saludos y sean felices.

Para continuar ampliando este tema sugerimos entrar en los enlaces de los otro metodos de separación de mezclas que están en este articulo.

Aquello que estén buscando y no lo encuentren aquí rogamos nos lo hagan saber y lo subiremos con gusto desde ya gracias a todos y éxitos en sus examen.

Las nuevas fuentes de comounicación de sitios web hotmail