Archivo de la etiqueta: materia

Aprender más sobre Propiedades de la materia

Aprender más sobre Propiedades de la materia

Bien como vimos en el articulo anterior ya podemos entender que ademas de los sistemas heterogéneas y homogéneas, existen otro tipo de propiedades como son las inhomogéneas.

Estas propiedades son muy parecidas a los sistemas heterogéneos, la principal diferencia entre ambos que en este último si hay separación de fases, esto esta dado por la variación gradual que podemos distinguir.

Si tomamos un ejemplo, lo tenemos en la atmósfera sus capas que componen la misma no poseen una separación que llegue o pueda ser observada fácilmente.

Pero sabemos que la composición de gases en ella (atmósfera), tiene una variación lenta muy graduada.

Química Particulas fundamentales del Átomo

Química Partículas fundamentales del Átomo

Átomo: Es la partícula más pequeña de la materia.

Peso: Es la fuerza de atracción ejercida por la tierra sobre determinado cuerpo.

Materia: Es aquello que ocupe un lugar en el espacio.

  • Partículas subatómicas: Protones (+), electrones (-), Neutrones (+- )
  • Niveles de energía:
    • Capacidad de contener 2 electrones
    • Capacidad de contener 8 electrones
    • Capacidad de contener 18 electrones

Elemento: Átomo que no se puede disociar o dividir, aproximadamente 116, donde 26 se encuentran en el cuerpo con el 96%, el ser humano se compone por CHON (Carbono, Hidrogeno, Oxigeno, Nitrógeno)  3.9% por nueve elementos: Cloro, calcio, sodio, potasio, hierro, azufre, fósforo, magnesio, yodo y el 0.1% restantes por oligoelementos como cobalto, cobre, selenio, litio, etc.

Isótopo: determinado elemento que tiene las mismas características químicas, la diferencia radica en su formación física en el espacio y dado en base al número de neutrones

Numero Atómico: Igual a número de protones.

Peso Atómico:Es la suma de protones y neutrones (Masa Atómica).

Valencia: es la capacidad de un átomo de recibir o donar electrones.


Molécula: Un elemento que no se divide en 2 diferentes solo en si mismo, por ejemplo H2 = H + H.

Compuesto: Conjuntos de elementos que se pueden disociar en distintos elementos,  ejemplo H2O = H + H + O.
Enlaces:
Iónico: Unión de dos elementos por la  diferencia de sus cargas (opuestas).
Covalente: Estos comparten electrones ( ni donan, ni reciben ).

Propiedades de la Materia

Propiedades de la Materia

Si tenemos en cuenta que cada sustancia posee un conjunto único de propiedades o aquello que llamamos características que son las que nos permiten reconocerlas y de esta forma lograr distinguirla de otras diferentes sustancias.

Si ponemos atención en las propiedades del hidrógeno para poner de ejemplo, al igual que el agua y el oxigeno que hemos puesto en la imagen de la tabla del articulo anterior Compuestos quimicos. son los que nos permiten distinguir las diferencias de las sustancias.

Es posible agrupar en dos diferentes categorías las propiedades de la materia, estas son, físicas,y químicas. Sin necesidad de tener que cambiar la composición de las sustancias y sin cambiar la identidad de estas, es posible medir las propiedades físicas.

Se incluyen en las propiedades, olor,densidad,color,dureza y punto de ebullición.

Al ver las propiedades químicas notaremos como estas describen la forma en que determinada sustancia  puede reaccionar o cambiar para de esta manera formar otro tipo de sustancia. Notemos algunos de los ejemplos que podemos leer en libros de química, ” una propiedad química común es la inflamabilidad, la capacidad de una sustancia para arder en presencia de oxígeno”.

Propiedades Intensivas y Extensivas

Si pensamos en una propiedad donde el punto de fusión y la densidad, no son dependientes de la cantidad que se pueda usar como muestra para examinar. Dichas propiedades que son llamadas intensivas, para la química son muy útiles y esenciales, dado que muchas de estas, pueden servir para poder identificar una determinada sustancia.

En cambio las propiedades extensivas ( de las sustancias ) , si son dependientes de la cantidad que se puede usar en el muestreo e incluyen a su vez mediciones de maza y el volumen, estas propiedades extensivas si dependen de la cantidad de las sustancias presentes.

Aconsejamos ver el articulo de Clasificacion de sistemas repaso

El Átomo y videos de todos los Modelos y postulados

EL ÁTOMO

1.- El átomo en la antigüedad
Los filósofos griegos discutieron mucho acerca de la naturaleza de la materia y concluyeron que el mundo era más simple de lo que parecía. Algunas de sus ideas de mayor relevancia fueron:

Leucipo

Demócrito

En el siglo V a. C., Leucipo sostenía que había un sólo tipo de materia y pensaba que si dividíamos la materia en partes cada vez más pequeñas, obtendríamos un trozo que no se podría cortar más. Demócrito llamó a estos trozos átomos (“sin división”).

La filosofía atomista de Leucipo y Demócrito podía resumirse en:

1.- Los átomos son eternos, indivisibles, homogéneos e invisibles.

2.- Los átomos se diferencian en su forma y tamaño.

3.- Las propiedades de la materia varían según el agrupamiento de los átomos.

Empédocles

En el siglo IV a. C., Empédocles postuló que la materia estaba formada por 4 elementos: tierra, aire, agua y fuego.

Aristóteles

Aristóteles, posteriormente, postula que la materia estaba formada por esos 4 elementos pero niega la idea de átomo, hecho que se mantuvo hasta 200 años después en el pensamiento de la humanidad.

1.1.- La teoría atómica de Dalton

En 1808, John Dalton  publicó su teoría atómica, que retomaba las antiguas ideas de Leucipo y de Demócrito. Según la teoría de Dalton:

1.- Los elementos están formados por partículas diminutas, indivisibles e inalterables llamadas átomos.

Dalton estableció un sistema para designar a cada átomo de forma que se pudieran distinguir entre los distintos elementos:

2.- Los átomos de un mismo elemento son todos iguales entre sí en masa, tamaño y en el resto de las propiedades físicas o químicas. Por el contrario, los átomos de elementos diferentes tienen distinta masa y propiedades.

3.- Los compuestos se forman por la unión de átomos de los correspondientes elementos según una relación numérica sencilla y constante.

De la teoría atómica de Dalton se pueden obtener las siguientes definiciones:

– Un átomo es la partícula más pequeña de un elemento que conserva sus propiedades.

– Un elemento es una sustancia pura que está formada por átomos iguales.

– Un compuesto es una sustancia que está formada por átomos distintos combinados en una relación numérica sencilla y constante.

2.- El átomo es divisible

Una vez aceptada la teoría atómica de la materia, los fenómenos de electrización y electrólisis pusieron de manifiesto, por un lado, la naturaleza eléctrica de la materia y, por otro, que el átomo era divisible; es decir, que estaba formado por otras partículas fundamentales más pequeñas.

En esta página puedes ver ejemplos sobre fenómenos de electrización.

Los fenómenos eléctricos son una manifestación de su carga eléctrica. La unidad de carga eléctrica en el SI es el culombio (C).

Hay 2 tipos de cargas eléctricas: positiva y negativa. dos cuerpos que hayan adquirido una carga del mismo tipo se repelen, mientras que si poseen carga de distinto tipo se atraen.

La materia es eléctricamente neutra, es decir, tiene la misma cantidad de cada tipo de carga. cuando adquiere carga, tanto positiva como negativa, es porque tiene más cantidad de un tipo que de otro.

A finales del siglo XIX y principios del XX, una serie de experimentos permitieron identificar las partículas responsables de la carga negativa (el electrón) y de la carga positiva (el protón). Estos experimentos proporcionaron los datos siguientes sobre la estructura de la materia:

– El átomo contiene partículas materiales subatómicas.

– Los electrones tienen carga eléctrica negativa y masa. Cada electrón posee una carga eléctrica elemental.

– Los protones tienen carga eléctrica positiva y mayor masa.

– Como el átomo es eléctricamente neutro, hay que suponer que el número de cargas eléctricas negativas (electrones) es igual al número de cargas positivas (protones).

3.- Modelos atómicos

En Ciencia, un modelo intenta explicar una teoría mediante una comparación. Un modelo será tanto más perfecto cuanto más claramente explique los hechos experimentales. El modelo es válido mientras explica lo que ocurre en los experimentos; en el momento en que falla, hay que modificarlo.

3.1.- Modelo atómico de Thomson

Por ser tan pequeña la masa de los electrones, el físico inglés J. J. Thomson supuso, en 1904, que la mayor parte de la masa del átomo correspondía a la carga positiva, que, por tanto, debía ocupar la mayor parte del volumen atómico. Thomson imaginó el átomo como una especie de esfera positiva continua en la que se encuentran incrustados los electrones (como las pasas en un pudin).

Este modelo permitía explicar varios fenómenos experimentales como la electrización y la formación de iones.

– La electrización: Es el exceso o la deficiencia de electrones que tiene un cuerpo y es la responsable de su carga eléctrica negativa o positiva.

– La formación de iones: Un ion es un átomo que ha ganado o ha perdido electrones. Si gana electrones tiene carga neta negativa y se llama anión y si pierde electrones tiene carga neta positiva y se llama catión.

3.2.- Modelo atómico de Rutherford

El modelo de Thomson tuvo una gran aceptación hasta que, en 1911, el químico y físico inglés Ernest Rutherford y sus colaboradores llevaron a cabo el “Experimento de Rutherford”.

En esta página puedes ver cómo este experimento ofrecía unos resultados que no podían explicarse con el modelo de átomo que había propuesto Thomson y, por tanto, había que cambiar el modelo.

En el experimento se bombardeaba una fina lámina de oro con partículas alfa (positivas) procedentes de un material radiactivo y se observaba que:

– La mayor parte de las partículas alfa atravesaban la lámina sin cambiar de dirección, como era de esperar.

– Algunas partículas alfa se desviaron considerablemente.

– Unas pocas partículas alfa rebotaron hacia la fuente de emisión.

Puedes ver el experimento en este vídeo.

Aquí tienes otra versión interactiva del mismo experimento.

El Modelo atómico de Rutherford o modelo nuclear establece que:

– El átomo tiene un núcleo central en el que están concentradas la carga positiva y casi toda la masa.

– La carga positiva de los protones del núcleo se encuentra compensada por la carga negativa de los electrones, que están fuera del núcleo.

– El núcleo contiene, por tanto, protones en un número igual al de electrones del átomo.

– Los electrones giran a mucha velocidad alrededor del núcleo y están separados de éste por una gran distancia.

3.3.- Los neutrones

La masa de protones y electrones no coincidía con la masa total del átomo; por tanto, Rutherford supuso que tenía que haber otro tipo de partículas subatómicas en el núcleo de los átomos.

Estas partículas fueron descubiertas en 1933 por J. Chadwick. Al no tener carga eléctrica recibieron el nombre de neutrones.

Los neutrones son partículas sin carga y de masa algo mayor que la masa de un protón.

3.4.- Estructura del átomo

Según esto, el átomo quedó constituido así:

– Una zona central o NÚCLEO donde se encuentra la carga total positiva (la de los protones) y la mayor parte de la masa del átomo, aportada por los protones y los neutrones.

– Una zona externa o CORTEZA donde se hallan los electrones, que giran alrededor del núcleo.

Hay los mismos electrones en la corteza que protones en el núcleo, por lo que el conjunto del átomo es eléctricamente neutro.

Postulados de Bohr y Erwin Schrödinger

Cuántica. Schrodinger

Diagrama del modelo atómico de Bohr.

Niels Bohr se basó en el átomo de hidrógeno para realizar el modelo que lleva su nombre. Bohr intentaba realizar un modelo atómico capaz de explicar la estabilidad de la materia y los espectros de emisión y absorción discretos que se observan en los gases.

Describió el átomo de hidrógeno con un protón en el núcleo, y girando a su alrededor un electrón. El modelo atómico de Bohr partía conceptualmente del modelo atómico de Rutherford y de las incipientes ideas sobre cuantización que habían surgido unos años antes con las investigaciones de Max Planck y Albert Einstein. Debido a su simplicidad el modelo de Bohr es todavía utilizado frecuentemente como una simplificación de la estructura de la materia.
En este modelo los electrones giran en órbitas circulares alrededor del núcleo, ocupando la órbita de menor energía posible, o la órbita más cercana al núcleo posible. El electromagnetismo clásico predecía que una partícula cargada moviéndose de forma circular emitiría energía por lo que los electrones deberían colapsar sobre el núcleo en breves instantes de tiempo. Para superar este problema Bohr supuso que los electrones solamente se podían mover en órbitas específicas, cada una de las cuales caracterizada por su nivel energético.

Cada órbita puede entonces identificarse mediante un número entero n que toma valores desde 1 en adelante. Este número “n” recibe el nombre de Número Cuántico Principal.
Bohr supuso además que el momento angular de cada electrón estaba cuantizado y sólo podía variar en fracciones enteras de la constante de Planck.

De acuerdo al número cuántico principal calculó las distancias a las cuales se hallaba del núcleo cada una de las órbitas permitidas en el átomo de hidrógeno.
Estos niveles en un principio estaban clasificados por letras que empezaban en la “K” y terminaban en la “Q”. Posteriormente los niveles electrónicos se ordenaron por números.

Cada órbita tiene electrones con distintos niveles de energía obtenida que después se tiene que liberar y por esa razón el electrón va saltando de una órbita a otra hasta llegar a una que tenga el espacio y nivel adecuado, dependiendo de la energía que posea, para liberarse sin problema y de nuevo volver a su órbita de origen.
El modelo atómico de Bohr constituyó una de las bases fundamentales de la mecánica cuántica. Explicaba la estabilidad de la materia y las características principales del espectro de emisión del hidrógeno. Sin embargo no explicaba el espectro de estructura fina que podría ser explicado algunos años más tarde gracias al modelo atómico de Sommerfeld. Históricamente el desarrollo del modelo atómico de Bohr junto con la dualidad onda-corpúsculo permitiría a Erwin Schrödinger descubrir la ecuación fundamental de la mecánica cuántica.
Postulados de Bohr
En 1913 Niels Bohr, desarrolló su célebre modelo atómico de acuerdo a cuatro postulados fundamentales:
1. Los electrones orbitan el átomo en niveles discretos y cuantizados de energía, es decir, no todas las órbitas están permitidas, tan sólo un número finito de éstas.
2. Los electrones pueden saltar de un nivel electrónico a otro sin pasar por estados intermedios.
3. El salto de un electrón de un nivel cuántico a otro implica la emisión o absorción de un único cuanto de luz (fotón) cuya energía corresponde a la diferencia de energía entre ambas órbitas.
4. Las órbitas permitidas tienen valores discretos o cuantizados del momento angular orbital L de acuerdo con la siguiente ecuación:

Donde n = 1,2,3,… es el número cuántico angular o número cuántico principal.
La cuarta hipótesis asume que el valor mínimo de n es 1. Este valor corresponde a un mínimo radio de la órbita del electrón de 0.0529 nm. A esta distancia se le denomina radio de Bohr. Un electrón en este nivel fundamental no puede descender a niveles inferiores emitiendo energía.
Se puede demostrar que este conjunto de hipótesis corresponde a la hipótesis de que los electrones estables orbitando un átomo están descritos por funciones de onda estacionarias. Un modelo atómico es una representación que describe las partes que tiene un átomo y como están dispuestas para formar un todo.
Basándose en la constante de Planck (h/2*3,1415) consiguió cuantizar las órbitas observando las líneas del espectro

Principio de dualidad del electrón (onda-partícula).Postulado de Broglie.

Dualidad Onda-Partícula
En 1924 el físico francés Louis Víctor de Broglie sugirió que era posible contemplar las partículas elementales como si fuesen ondas.

Utilizando la famosa ecuación de Einstein que relaciona masa y energía y la ecuación de Planck que relaciona la energía de una radiación con su frecuencia, de Broglie demostró que toda partícula actúa también como una onda de cierta longitud.
En principio, esta conclusión puede ser extendida a cualquier cuerpo. Sin embargo, de la expresión obtenida por de Broglie y las observaciones experimentales hechas se deduce que cuanto más masiva es una partícula, más prominente es su comportamiento como tal, y menor es la posibilidad de contemplar su aspecto de onda.
La dualidad onda-partícula tiene consecuencias importantes a nivel subatómico, pero también sirve para explicar ciertos comportamientos experimentales de la luz y otras radiaciones, como la difracción y los fenómenos de interferencia.
La teoría de los “cuantos” fue revolucionaria para su época. Incluso el mismo Planck no creyó en la existencia real de los fotones en un principio y su aplicación al análisis de la radiación del cuerpo negro fue casi un juego mental.

Pero pronto, la virtud de apreciar el trabajo en equipo entre los hombres de ciencia, de reunirse a debatir sus hipótesis y valorar el intercambio de opiniones, hizo posible el desarrollo de la mecánica cuántica, base de la física moderna.

Un logro de esta magnitud no podía haber sido obra de un solo hombre, sino la integración del trabajo de muchos equipos, primero en Europa, hasta la Segunda Guerra Mundial, y posteriormente, en Estados Unidos.

Estos experimentos en los que la luz y los electrones se comportaban como partículas condujeron al francés Louis De Broglie en 1924 a enunciar su famosa hipótesis de la dualidad onda-corpúsculo, afirmando que la luz tiene una doble naturaleza, es decir, se propaga mediante ondas electromagnéticas y manifiesta el comportamiento ondulatorio, pero que en ciertos experimentos de interacción con la materia ofrece un comportamiento corpuscular.

Eso sí, jamás presenta simultáneamente el doble carácter. Esta hipótesis no la redujo De Broglie exclusivamente a la luz, sino a todas las partículas materiales.
La dualidad onda corpúsculo, también llamada onda partícula, resolvió una aparente paradoja, demostrando que la luz y la materia pueden, a la vez, poseer propiedades de partícula y propiedades ondulatorias.
De acuerdo con la física clásica existen diferencias entre onda y partícula. Una partícula ocupa un lugar en el espacio y tiene masa mientras que una onda se extiende en el espacio caracterizándose por tener una velocidad definida y masa nula.
Actualmente se considera que la dualidad onda – partícula es un “concepto de la mecánica cuántica según el cual no hay diferencias fundamentales entre partículas y ondas: las partículas pueden comportarse como ondas y viceversa.” (Stephen Hawking, 2001)

La longitud de onda de la onda λ asociada a una partícula de masa m que se mueve con velocidad v se calcula, según De Broglie, mediante la expresión:

Toda la materia presenta características tanto ondulatorias como corpusculares comportándose de uno u otro modo dependiendo del experimento específico.
Para postular esta propiedad de la materia De Broglie se basó en la explicación del efecto fotoeléctrico, que poco antes había dado Albert Einstein sugiriendo la naturaleza cuántica de la luz.

Para Einstein, la energía transportada por las ondas luminosas estaba cuantizada, distribuida en pequeños paquetes energía o cuantos de luz, que más tarde serían denominados fotones, y cuya energía dependía de la frecuencia de la luz a través de la relación: , donde es la frecuencia de la onda luminosa y la constante de Planck.

Albert Einstein proponía de esta forma, que en determinados procesos las ondas electromagnéticas que forman la luz se comportan como corpúsculos. De Broglie se preguntó que por qué no podría ser de manera inversa, es decir, que una partícula material (un corpúsculo) pudiese mostrar el mismo comportamiento que una onda.

Principio de incertidumbre de Heissenberg.
Principio enunciado en 1927 por el alemán Werner Heisenberg según el cual no puede ser conocida con exactitud y simultáneamente la posición y la cantidad de movimiento de un electrón.
El físico alemán Werner K. Heisenberg es conocido sobre todo por formular el principio de incertidumbre, una contribución fundamental al desarrollo de la teoría cuántica. Este principio afirma que es imposible medir simultáneamente de forma precisa la posición y el momento lineal de una partícula.

Heisenberg fue galardonado con el Premio Nobel de Física en 1932. El principio de incertidumbre ejerció una profunda influencia en la física y en la filosofía del siglo XX.
Estuvo a cargo de la investigación científica del proyecto de la bomba atómica alemana durante la II Guerra Mundial.

Bajo su dirección se intentó construir un reactor nuclear en el que la reacción en cadena se llevara a cabo con tanta rapidez que produjera una explosión, pero estos intentos no alcanzaron éxito.

Estuvo preso en Inglaterra después de la guerra. Murió en 1976.
El principio de incertidumbre desempeñó un importante papel en el desarrollo de la mecánica cuántica y en el progreso del pensamiento filosófico moderno. En 1932, Heisenberg fue galardonado con el Premio Nobel de Física. Entre sus numerosos escritos se encuentran Los principios físicos de la teoría cuántica, Radiación cósmica, Física y filosofía e Introducción a la teoría unificada de las partículas elementales.
El Principio de Incertidumbre de Heisenberg es sin duda algunos unos de los enigmas de la historia, debido a que este menciona que “Lo que estudias, lo cambias”, entonces, si esto es cierto, ¿Qué tanto a cambiado la realidad de lo que nos narra la historia?.

EXPRESIÓN MATEMÁTICA
En mecánica cuántica, la relación de indeterminación de Heisenberg o relación de incertidumbre de Heisenberg1 afirma que no se puede determinar, simultáneamente y con precisión arbitraria, ciertos pares de variables físicas, como son, por ejemplo, la posición y el momento lineal (cantidad de movimiento) de un objeto dado. En otras palabras, cuanta mayor certeza se busca en determinar la posición de una partícula, menos se conoce su cantidad de movimiento lineal. Este principio fue enunciado por Werner Heisenberg en 1927.

Si se preparan varias copias idénticas de un sistema en un estado determinado las medidas de la posición y el momento variarán de acuerdo con una cierta distribución de probabilidad característica del estado cuántico del sistema. Las medidas del objeto observable sufrirá desviación estándar Δx de la posición y el momento Δp verifican entonces el principio de incertidumbre que se expresa matemáticamente como:

donde h es la constante de Planck (para simplificar, suele escribirse como )
En la física de sistemas clásicos esta incertidumbre de la posición-momento no se manifiesta puesto que se aplica a estados cuánticos y h es extremadamente pequeño. Una de las formas alternativas del principio de incertidumbre más conocida es la incertidumbre tiempo-energía que puede escribirse como:

Esta forma es la que se utiliza en mecánica cuántica para explorar las consecuencias de la formación de partículas virtuales, utilizadas para estudiar los estados intermedios de una interacción. Esta forma del principio de incertidumbre es también la utilizada para estudiar el concepto de energía del vacío.
Expresión general de la relación de incertidumbre
Además de las dos formas anteriores existen otras desigualdades como la que afecta a las componentes Ji del momento angular total de un sistema:

Donde i, j, k son distintos y Ji denota la componente del momento angular a lo largo del eje xi.
Más generalmente si en un sistema cuántico existen dos magnitudes físicas a y b representadas por los operadores u observables denotados como , en general no será posible preparar una colección de sistemas todos ellos en el estado , donde las desviaciones estándar de las medidas de a y b no satisfagan la condición:

Explicación cualitativa de la relación de incertidumbre
Podemos entender mejor este principio si pensamos en lo que sería la medida de la posición y velocidad de un electrón: para realizar la medida (para poder “ver” de algún modo el electrón) es necesario que un fotón de luz choque con el electrón, con lo cual está modificando su posición y velocidad; es decir, por el mismo hecho de realizar la medida, el experimentador modifica los datos de algún modo, introduciendo un error que es imposible de reducir a cero, por muy perfectos que sean nuestros instrumentos.
No obstante hay que recordar que el principio de incertidumbre es una limitación sobre el tipo de experimentos realizables, no se refiere a la sensibilidad del instrumento de medida. No debe perderse de vista que la explicación “divulgativa” del párrafo anterior no se puede tomar como explicación del principio de incertidumbre.
Consecuencias de la relación de incertidumbre
Este Principio supone un cambio básico en nuestra forma de estudiar la Naturaleza, ya que se pasa de un conocimiento teóricamente exacto (o al menos, que en teoría podría llegar a ser exacto con el tiempo) a un conocimiento basado sólo en probabilidades y en la imposibilidad teórica de superar nunca un cierto nivel de error.
El principio de indeterminación es un resultado teórico entre magnitudes conjugadas (posición – momento, energía-tiempo, etcétera). Un error muy común es decir que el principio de incertidumbre impide conocer con infinita precisión la posición de una partícula o su cantidad de movimiento. Esto es falso. El principio de incertidumbre nos dice que no podemos medir simultáneamente y con infinita precisión un par de magnitudes conjugadas.
Es decir, nada impide que midamos con precisión infinita la posición de una partícula, pero al hacerlo tenemos infinita incertidumbre sobre su momento. Por ejemplo, podemos hacer un montaje como el del experimento de Young y justo a la salida de las rendijas colocamos una pantalla fosforescente de modo que al impactar la partícula se marca su posición con un puntito. Esto se puede hacer, pero hemos perdido toda la información relativa a la velocidad de dicha partícula.
Por otra parte, las partículas en física cuántica no siguen trayectorias bien definidas. No es posible conocer el valor de las magnitudes físicas que describen a la partícula antes de ser medidas. Por lo tanto es falso asignarle una trayectoria a una partícula. Todo lo más que podemos es decir que hay una determinada probabilidad de que la partícula se encuentre en una posición más o menos determinada.

La ecuación de onda de Schrödinger y el principio de equivalencia
En1926 Erwin Schrödinger formula la ecuación de onda de Schrödinger, que describe el comportamiento y la energía de las partículas submicroscópicas. Es una función análoga a las leyes de Newton para los sólidos macroscópicos que incorpora tanto el carácter de partícula (en función de la masa) como el carácter de onda en términos de una función de onda Y ( psi)..

Podemos pensar en las ecuaciones de onda de Schrödinger como en ondas estacionarias de diferente energía.
El ejemplo del movimiento de una cuerda de guitarra nos ayudará a comprender el concepto de onda estacionaria. La cuerda de guitarra vibra pero no se desplaza, por eso es estacionaria.
Un nodo es un punto que no se mueve.

La longitud de la cuerda tiene que ser un múltiplo del valor de media longitud de onda, ya que en los dos extremos de la cuerda que están fijos debe haber un nodo.

Para resolver la ecuación de onda Schrödinger requiere el uso de herramientas de cálculo complejas, que no vamos a analizar. Aunque la ecuación no tiene en sí significado físico el valor de la función de onda al cuadrado (ψ2) representa la distribución de probabilidad de encontrar al electrón en cierta región del espacio, también denominado densidad electrónica.
La ecuación de Schrodinger inició una nueva era para la física y la química, y abrió un nuevo campo: él de la mecánica cuántica (también conocido como mecánica ondulatoria).

La ecuación de Schrödinger para una partícula libre describe la evolución temporal de la onda asociada a la partícula (una onda de probabilidad según la regla de Born):
(1)
Voy a mostrar como un cambio a un sistema de coordenadas uniformemente acelerado es equivalente a considerar que la partícula está sujeta a un potencial gravitatorio uniforme, dando lugar a una curiosa realización del principio de equivalencia.
La mecánica ondulatoria de Schrödinger

La mecánica matricial de Heisenberg fue un éxito ya que de ella se podían deducir los resultados ya conocidos de física cuántica, pero partiendo de principios generales válidos para cualquier sistema.

Sin embargo, el desarrollo es farragoso, y bastante abstracto, lo cual hacía a la teoría de Heisenberg poco atractiva.

A Erwin Schrödinger (1887-1961) le desagradaba tanta abstracción, y prefirió desarrollar la mecánica a través de conceptos más reales. Partió de la teoría de Louis de Broglie, en la que se podían considerar a las partículas como ondas. Si este era su comportamiento (al menos uno de ellos), entonces matemáticamente ese sistema debía ser descrito por ecuaciones correspondientes a ondas.

Gracias al desarrollo matemático de Joseph Fourier (1768-1830), se sabe que cualquier función puede ser descrita como una combinación infinita de funciones seno y coseno: que son precisamente las que describen a las ondas más simples. De esta forma, un sistema y su evolución, se describe por una suma de ondas. La mecánica de Schrödinger es llamada así mecánica ondulatoria, y se resume en una única ecuación en derivadas parciales, la ecuación de Schrödinger dependiente del tiempo:

(Versión simplificada, donde Y es la función de onda que describe el sistema, y V(x) es la energía potencial del sistema. La ecuación se puede generalizar a las 3 dimensiones del espacio, usando geometría cartesiana, cilíndrica o esférica)

Pero, ¿qué significa esta ecuación?

La mecánica trata de hallar la evolución de un sistema, partiendo de los factores que lo afectan. La mecánica de Newton trata de hallar la trayectoria en el espacio de un móvil, sabiendo cómo actúan determinadas fuerzas a través de las tres leyes de Newton.

William Hamilton (1805-1865) desarrolló una mecánica equivalente a partir de conceptos distintos. En vez de tratar con el intuitivo concepto de fuerza (una fuerza produce un cambio en el movimiento de una partícula, una aceleración), usó el más abstracto y general energía. Un sistema posee una energía cinética debida a su movimiento. Cuando nada interacciona con el sistema, esa es su única energía. Sin embargo, cuando sí hay una interacción, hay un intercambio de energía a través de una energía potencial. Este intercambio es el que produce las fuerzas en la descripción de Newton.

La mecánica de Hamilton en primer lugar determina cual es la energía total del sistema: la suma de energía cinética, y potencial. Esta cantidad recibe un nombre: el Hamiltoniano. Para hallar la trayectoria se hace uso de un principio general de la física: el principio de mínima acción, por el cual, la evolución de un sistema será tal que hará que su energía total sea la mínima posible. De todas las trayectorias posibles que pueda tener un móvil, realizará aquella que minimice su energía.

La ecuación de onda de Schrödinger sigue esta misma filosofía. El primer término del lado izquierdo de la ecuación se representa la energía cinética, mientras que el segundo la energía potencial: es el Hamiltoniano, pero en versión cuántica.

Cuando un sistema no depende del tiempo, es un sistema estacionario, y la ecuación a resolver es ésta, llamada ecuación de Schrödinger independiente del tiempo.

Mientras en la mecánica clásica de Hamilton trataría de hallar la función Y tal que el valor de E sea mínimo, la mecánica cuántica trata de calcular todas las funciones Ya con su correspondiente energía En, ya que según el enfoque tomado por de Broglie y Schrödinger, y gracias también a el desarrollo matemático de Fourier, la descripción total del sistema es una combinación de todas estas funciones de onda, cada una con su propia energía.

Los operadores

Si vemos la ecuación de Schrödinger independiente del tiempo, matemáticamente es un problema conocido como de auto valores, y que ya había desarrollado Fourier: la solución a la ecuación son todas esas funciones (llamadas auto funciones) Y1,Y2,Y3… tales que al aplicarles una serie de operaciones, resulta un número de veces E1,E2,E3…(auto valor o valor propio) la misma función Y1,Y2,Y3… Sólo esas funciones son válidas, y la solución general al problema es una suma de todas las auto funciones.

De esta forma, hay que hablar de operadores. La ecuación de Schrödinger, hemos dicho que representa la versión cuántica del Hamiltoniano H, una cantidad que contiene la suma de energía cinética y potencial:

Si queremos asimilar las expresiones clásica y cuántica del Hamiltoniano, entonces hay que identificar al momento lineal p con un operador que actúa sobre la función de onda calculando su derivada. La energía potencia, una función de la posición x, sería un operador que multiplica la expresión V(x) por la función de onda.

El significado físico de los operadores es el de calcular una magnitud observable en un proceso de medición. Más concretamente, dada una función de onda Y, suma de varias auto funciones (Y=AY1+BY2+CY3…), el resultado es en realidad la probabilidad de que la medida se corresponda con un sistema en el estado Y1, Y2, ó Y3… Por ejemplo, el operador Hamiltoniano H, da como resultado observable la energía total del sistema En, de cada uno de los estados posibles, y la probabilidad medir tal valor.

La función de onda representa por tanto una probabilidad respecto al estado en que se encuentra el sistema, y una medida del sistema revela uno y sólo uno de estos estados, con una probabilidad determinada.

Este es uno de los pilares más importantes para la interpretación de la mecánica cuántica: antes del proceso de medición, el estado del sistema no está definido, sino que hay unas probabilidades de que tras realizar una medida, el resultado de la medición sea uno en concreto. Sin embargo, tras haber sido medido, el sistema permanece en ese estado determinado. Para un sistema dado, no es posible determinar qué estado se revelará en un proceso de medición. Sin embargo, sí se puede determinar la probabilidad de que ese resultado aparezca.

La mecánica ondulatoria Schrödinger

– La mecánica ondulatoria (Erwin Schrödinger):

Schrödinger:  Científico  fundamental en el desarrollo de la teoría cuántica.

Schrödinger priorizo las teorías clásicas donde los conceptos definidos ya eran fácilmente visualizadas.B

Trabajo en una  teoría que explicara la física cuántica basándose en  la teoría ondulatoria de la materia de De Broglie.

De  esta forma logro tener una imagen en su cabeza de como los “electrones ondulatorios” de De Broglie se refractaban de tal manera que podía viajar por las órbitas del modelo de Bohr.

Es como consiguió, elaborar una formula donde cualquier sistema físico podía ser descrito sabiendo su energía, a partir de una función de onda (i.e. para un partícula):

ihbarfrac{partial}{partial t} Psi(mathbf{r},,t) = -frac{hbar^2}{2m}nabla^2Psi(mathbf{r},,t) + V(mathbf{r})Psi(mathbf{r},,t)

Donde   mathbf{r} = (x,y,z) reconocer la posición de la partícula en sus tres dimensiones

Psi(mathbf{r},t) Esta  función de onda representa la probabilidad de una partícula de tener la posición r en un momento dado t

m es la masa de la partícula

V(mathbf{r}) es la energía potencial de la partícula en la posición r.

Densidad de Probabilidad de ubicación de un electrón para los primeros niveles de energía

Schrödinger decidió en un primer momento que Psi(mathbf{r},t) representaba la posición del electrón.

Posteriormente, cambió su interpretación hacia una densidad de carga electrónica.

No fue hasta la interpretación probabilística de Born cuando se definió la función de onda como la probabilidad de encontrar un electrón en la posición r en un instante t.

Aunque a Schrödinger le desagradaba la notación empleada por Heisenber, al final se demostró (Dirac) que ambas teorías eran equivalentes.

– Algebra cuántica (Paul Dirac):

Dirac, hizo suyo ya que generalizó la teoría cuántica demostrando que ambas teorías de Heisenberg y Shrödinger eran casos especiales de su teoría más general.

Aplicando mecánica cuántica a las ecuaciones de Maxwell, Dirac construyó la primer teoría cuántica de campo (Quantum Field Theory).

En esta teoría, el concepto de campo continuo (introducido tiempo atrás por Faraday y compañía) donde el campo electromagnético (i.e.) es continuo se divide en pequeños trozos de modo que así puede interactuar con la material (compuesta por electrones, protones,…).

, la luz se puede tratar de las dos formas, como onda o como materia (dualidad explicada por Einstein unos años antes).

A través de su teoría, Dirac fue capaz también de demostrar la existencia de electrones con carga positivas, ahora llamados positrones. El comienzo del estudio de la anti-materia había nacido.

3) Puliendo los últimos retoques de la Teoría Cuántica (Principio de Incertidumbre de Heisenberg, Complementariedad de Bohr y Copenhagen Interpretation (CHI), Einstein’s box of ligth, Paradoja EPR, Principio de Localidad, Principio de Desigualdad de Bell,…)

Por supuesto, con la generalización de Dirac no se termina la historia. Nuevos puntos de vista, explicaciones o descripciones seguían apareciendo.

– (1927) Heisenberg postuló su principio de incertidumbre donde se expone que “no se puede determinar, simultáneamente y con precisión arbitraria, ciertos pares de variables físicas, como son, por ejemplo, la posición y el momento lineal (cantidad de movimiento) de un objeto dado.

En otras palabras, cuanta mayor certeza se busca en determinar la posición de una partícula, menos se conoce su cantidad de movimiento lineal“.

– (1927) Bohr describe la complementariedad de la luz. Aunque la descripción como partícula o como onda son excluyentes, ambos son necesarios para un completo entendimiento del comportamiento de la luz.

– Borh, junto con Heisenberg, Pauli y Born, presenta en Copenhagen un nuevo concepto combinando la mecánica matricial y el principio de incertidumbre de Heisenber, la interpretación probabilística de Born sobre la función de onda de Schrödinger y su propia idea de complementariedad de la luz. Copenhagen Interpretation (CHI): la descripción del estado de un sistema atómico antes de ser medido es indefinido, conociendo únicamente posibles valores con ciertas probabilidades.

Nombre de compuestos inorgánicos

Si deseamos conseguir información de las sustancia dadas, se ha de conocer la fórmula química y nombre.

Cada nombre es y fórmulas de todo compuesto  es parte fundamental de un vocabulario fundamental en Química.

La nomenclatura química es a lo que nos referimos como lenguaje su definición en latin nomen latin = nombre y calare = llamar.

Más de 10 millones de sustancias son las que se conocen, podemos nombrar algunas de lo contrario crearíamos mas que una base de datos en una página.

Algunos ejemplos son:  el agua  

H2O) y el amoniaco (NH3) bien claro esta que son nombres tradicionales pero sin embargo,  debemos apoyarnos al conjunto de reglas sistemáticas donde se determina su único nombre para cada sustancia con base a su composición.

Como se basan las reglas de nomenclaturas químicas la división de cada sustancia química de diferentes categorías, estas división se manifiestan en las que son compuestos orgánicos y aquellos inorgánicos, los que poseen carbono son los orgánicos, se combinan con oxígeno,,nitrógeno, hidrógeno y azufre, el resto son denominados inorgánicos.

Al comienzo de la evolución los químicos relacionaban los compuestos orgánicos con plantas y animales, a los inorgánicos , con toda porción inerte del planeta.

Ya la distinción entre la materia viva y la inanimada deja de ser pertinente, las clasificación entre compuestos orgánicos y inorgánicos sigen siendo relevantes, como veremos más adelante las reglas basicas para el nombre de aquellos compuestos inorgánicos, veremos en consideración tres categorías de sustancias: estos son ácidos, moleculares y iónicos.

La teoría de Dalton Estequiometría.

La palabra átomo, significa “sin cortes” o bien “indibisible”

Dalton: convierte la teoría atómica en cuantitativa, demuestra que es posible determinar las masas relativas de los átomos de diferente elemento.

Los principales postulados de Dalton son:

1 * Elementos compuestos de partículas extremadamente pequeñas su nombre (átomo), los átomos del mismo elemento son parecidos y los átomos de diferentes elementos son distintos.

2 * La separación de átomos y la unión de átomos es realizada con reacciones químicas, nos dice que dichas reacciones, ningún átomo se crea o se destruye y también que ningún átomo de un elemento se convierte en un átomo de otro elemento.

Bueno simplifiquemos esto, la materia esta dividida en pequeñas partículas indibisibles el átomo.

Igual masa igual propiedad, todo los átomos de un mismo elemento son iguales entre si.

Los que tienen distinto elemento tienen distinta masa y propiedad.

Cuando los átomos se unen entre si, forman compuestos en relación constante y sencilla.

Cuando se realizan reacciones químicas los átomos se unen o se separan pero jamas se destruyen.

Estados de la materia.


Estados: ya hemos visto los estados de la materia de un modo muy esquemático ahora bien para que quede claro a quien no entendió o le falto algo para comprender, expliquemos lo de esta forma.

Por ejemplo el gas, un liquido o un solido, ahora bien un gas ( también llamado vapor), no posee a la vista volumen ni forma física a no ser que lo ajustemos a un determinado recipiente si podemos comprimir un gas de forma que ocupe un espacio más pequeño y también expandirlo de modo que ocupe un mayor espacio.

Un liquido por lo pronto tiene un volumen definido, independiente de su recipiente aunque no tenga forma específica si toma la forma del recipiente del cual lo introduzcas.

Un solido: en cambio si posee forma y volumen definidos, rígido.

Es así que las propiedades de los estados pueden entenderse a nivel molecular.

Cuando hablamos del agua vapor liquido hielo, podemos imaginar situaciones reales de estos estados físicos, si bien no podemos ver el vapor de agua si podemos ver una nube condensada y que en su entorno a cambio de temperaturas dejara gotas de ella.

En cambio el gas al estar sus moléculas mas separadas que las del liquido y los solidos chocan repetidamente entre si y con las paredes del recipiente.

En el solido sabemos que las moléculas están mas sujetas entre si, estas moléculas apenas tienen movilidad, es por esto que la definimos como rígidas.

Sublimación


Sublimación: “El hielo seco”, es dióxido de carbono (CO2), en estado solido a temperatura y presión ambiente.

¿ Por que no la maza?

Pasa de solido a gas, sublimando.

El naftaleno y el paradiclorobenceno, también subliman a temperatura ambiente, utilizando como antipolillas.

..

Cuales son los objetivos:

A)    se utiliza como método de separación y/o purificación de sustancias dadas

B)    Demostrar o evidenciar los cambios del estado de agregación molecular de cualquier materia.

C)    La observación de las diversas formas de los cristales.

D)    Estudiara y encontrar la manera para reducir los costos y también los riesgos que puedan producir los reactivos en el laboratorio.

Lamentablemente el estudio de la química, en sus bases, es muy pobre ya que, se limita a demostrar los desarrollos o aplicar ejercicios, pero no a presentar un problema < X > determinado.

Con la enseñanza y la experimentación, el alumno adquiere habilidades en lo que respecta, al manejo de los instrumentos dentro de el ámbito del laboratorio, con la vigilancia del profesor, en con planificaciones predeterminadas para su desarrollo y creatividad.

Nuestros días pasan en un universo que se manifiesta, de diversas y diferentes formas y estructuras, la materia adopta estados físicos diferentes, los cuales vemos en nuestro ecosistemas, sólido, liquido  y gaseoso.

El verlos de modo cotidiano, no nos permite ver lo grandioso de la naturaleza y sus cambios permanentes, si nuestro propio aliento cuando estamos en invierno vemos esa pequeña humedad que sale de nuestra boca, la que llamamos comúnmente humo, o la del helado, que es hielo seco transformándose en gas, igual aprecias el humito que sale de su contorno, otra comparación que nos dan cuando estudiamos, es el olor a naftalina, ese olor que emana para evitar a las polillas.

Como ves son cambios de estado físico que apenas son percibidos por la vista pero estos cambios son fundamentales para la química.

Volver a Métodos de separación de mezcla