Archivo de la etiqueta: moléculas

Representación de Lewis y la regla del octeto

La representación de Lewis

En la representación de Lewis una capa que se encuentra completa de electrones es estable y sus átomos tienen la propiedad de transferir o bien compartir electrones en un intento de lograr alcanzar una estabilidad al llenar las capas de electrones, para lograr obtener de esta forma, la estructura electrónica de mayor estabilidad como son los gases nobles más próximos.

Estos gases nobles como todos sabemos cuentan con ocho electrones en su capa exterior. Para lograr dicha estabilidad, la tendencia de los átomos es lograr la configuración electrónica externa completada por ocho electrones, esto es lo que se conoce como la «regla del octeto»

Si dos átomos están compartiendo dos electrones ente ellos, se esta formando un enlace covalente. Todos los átomos acorde a su configuración electrónica, pueden llegar a cumplir esta regla del octeto lograda con pares de electrones que están compartidos,  (electrones enlazantes) y por otro lado, aquellos pares de electrones sin compartir,  (electrones no enlazantes).

En las estructuras de Lewis, se representa con un punto a cada electrón de valencia, para representar pares de electrones, se dibujan dos puntos o una linea.

En la figura superior, podemos observar con claridad las representaciones de Lewis de las moléculas orgánicas, Etano, Metilamina, Etanol y el Clorometano. Si observamos bien podemos notar con claridad que las tres últimas logran que sus átomos tengan su octeto electrónico gracias a la suma de electrones.

Polimeros Clasificación

Clasificación y conceptos.

La palabra un polímero proviene del Griego, ( Poly, muchos; meros, segmento o parte), sustancia donde las moléculas son, al menos una aproximación a múltiplos de la unidad de peso molecular bajo. El monómero es la unidad de bajo peso molecular. Cuando dicho polímero se ve de forma uniforme y rigurosa, en cuanto al peso molecular y su estructura molecular, al igual que su grado de polimerización este esta indicado por un número griego, el que indica la cantidad de unidades de monómeros que contenga, de esta forma debemos nombrar al número en si, dímeros, trímeros, tetrámero, pentámero, etc.

El numero no especificado de unidades es el designado por el término polímero, por ejemplo: el Trióximetileno, sera el trímero del formaldehido.

Cuando el número de unidades resulta muy grande, es utilizada la expresión gran polímero. En realidad un polímero no a de tener la necesidad de contar de moléculas individuales del mismo peso molecular, tampoco que tengan estas la misma composición química, o bien la misma estructura molecular.

Existen polímeros naturales que tienen determinadas proteínas globulares y también policarbohidratos los cuales las individuales moléculas contienen todas el mismo peso molecular y la misma estructura molecular. Aunque la mayoría de los polímeros sintéticos son la mezcla de aquellos componentes polimérios homólogos.

La presencia de grupos finales, son una pequeña variabilidad en la composición química, como su estructura molecular, ramas ocasionales, variaciones en la orientación de unidades monómeras y la irregularidad en el orden en el que se suceden los diferentes tipos de esas unidades en los copolímeros. Estas variedades en general no suelen afectar a las propiedades del producto final, sin embargo, se ha descubierto que en ciertos casos hubo variaciones en copolímeros y ciertos polímeros cristalinos.

Propiedades de los compuestos con enlace covalente

Propiedades de los compuestos con enlace covalente

Existen dos tipos de sustancias diferentes que presentan enlaces covalentes: las sustancias moleculares y los cristales covalentes.

En los cristales covalentes se forman redes tridimensionales (cristales) en las que los átomos se unen entre sí por enlaces covalentes.

El enlace covalente es muy fuerte , por tanto difícil de romper; esto hace que los cristales covalentes presenten las siguientes propiedades:

* Elevados puntos de fusión
* Muy poco solubles en cualquier tipo de disolvente.
* Suelen ser duros.
* Son  malos conductores de la electricidad.

Son sustancias de este tipo el diamante, SiO2 (cuarzo), carburo de silicio (Si2C), nitruro de boro (BN), etc.

Las sustancias moleculares se caracterizan porque un número definido de átomos se unen mediante enlaces covalentes formando Moléculas. .

Como el enlace covalente es muy fuerte, se necesita mucha energía  para  romper las moléculas. En cambio, las moleculas se unen entre sí por fuerzas intermoleculares que son fuerzas débiles. Estas fuerzas intermoleculares son las responsables de la mayoría de las propiedades de estas sustancias:

  • * Se pueden presentar en estado sólido, líquido o gaseoso a temperatura ambiente.
    *En general, sus puntos de fusión y ebullición no son elevados, aunque serán mayores cuando las fuerzas intermoleculares que unen a las moléculas sean más intensas.
    * Suelen ser blandas, pues al rallarlas se rompen las fuerzas intermoleculares.
    * La solubilidad es variable.
    * En general, son malos conductores de la electricidad.

Son muchas las sustancias de este tipo: H2, Br2, H2O, NH3, compuestos orgánicos, etc.

Enlace quimico

Metodos de separacion de mezclas

El mol y la masa molar

El mol y la masa molar


Vamos a trabajan dos moléculas de H2O.

2 H2 +          O2 →          2 H2Oar con el agua como ejemplo,  a nivel molecular el agua contiene una molécula de  O2 que  al reaccionar lo hacen con dos moléculas de H2 y se forman

2 moléculas          1 molécula          2 moléculas

2 x 2 umas          32 umas          2 x 18 umas

En el laboratorio no se puede trabajar con atomos o moléculas, debido a que no se pueden observar, por tanto, no se pueden contar. Necesitamos cantidades de estas sustancias que podamos manipular y en la que los atomos y las moléculas se encuentren en la misma proporción que a nivel molecular.
Como cada molécula de O2 tiene 16 veces más masa que una molécula de H2, masas de O2 y de H2 que se encuentren en la proporción de 16 a 1, tendrán el mismo número de moléculas.
En 32 g de O2 y en 2 g de H2 hay 6,022.1023 moléculas.Para contar partículas (atomos, moléculas, iones, etc) se define una nueva magnitud física que es diferente de la masa, denominada cantidad de sustancia, cuya unidad es el mol.

Un mol es la cantidad de sustancia que contiene 6,022.1023 partículas de esa sustancia. A este número se le llama Número de Avogadro (NA).
La masa que se corresponde con esta cantidad de sustancia se llama masa molar y es la masa atómica o molecular de la sustancia expresada en gramos.

1 mol de H2 es la cantidad de H2 que contiene 6,022.1023 moléculas de H2. Su masa es 2 g.
1 mol de O2 es la cantidad de O2 que contiene 6,022.1023 moléculas de O2. Su masa es 18 g.

2 H2 +          O2 →          2 H2O
2xNA moléculas          NA molécula          2xNA moléculas
2 mol                  1 mol                   2 mol
4 g                  32 g                   36 g

Podemos asegurar que en 4 g de H2 y en 36 g de H2O hay el doble de moléculas que en 32 g de O2.

Separación de Mezclas Cromatografía y Centrifugación

Cromatografía.

Escribir en colores.

Proceso físico de separación de separación de substancias llevado a cabo por la distribución en dos fases. Fase móvil  (gas-líquido)  y Fase estacionaria  (sólido-líquido)Dependiendo del estado de las fases involucradas es posible desarrollar varios tipos de cromatografía, cuando la fase móvil es un gas se denomina Cromatografía de Gases y cuando la fase móvil es un líquido se denomina Cromatografía de Líquidos.

La cromatografía se utiliza con los fluidos, que pueden ser gases o líquidos, se empuja a circular la mezcla por un sólido o un líquido que permanece estacionario (fase estacionaria).

Los distintos componentes de la mezcla circulan a velocidades diferentes por la fase estacionaria, y por lo tanto unos componentes están más tiempo retenidos de ella que otros, emergiendo después. Sirve como método físico de separación.

La fase estacionaria puede ser típicamente un sólido poroso como la celulosa, o como el gel.

Las moléculas de menor tamaño pueden cruzar todos los poros e invierten más tiempo en el recorrido mientras que las moléculas mayores de la mezcla no “pierden tiempo” en los poros, emergiendo más rápidamente.

Cinematografía Gas sólido: película liquida con alto punto de ebullición (Silicon o Polietileno) que recubre un sólido inerte (cromatografía gas líquido), cromatógrafo de gases (CG).

Todo compuesto que pueda ser separado por cromatografia ha de ser volátil y Termicamente estables.


Centrifugación.

Se habla de centrifugación cuando tenemos partículas de distinto tamaño en un medio acuoso, éstas sedimentan hacia el fondo a una velocidad que depende de su peso.

Este efecto podría utilizarse para separar componentes de distinto peso, si no fuera porque las velocidades de sedimentación son pequeñísimas, por lo que el sistema no es útil.

Así, pues lo que se hace es aumentar dichas velocidades de sedimentación haciendo girar muy rápidamente la mezcla. En este caso, la fuerza centrifuga hace el papel de la gravedad (peso) y puede ser mucho mayor que éste haciendo girar muy rápido la mezcla: este es el principio de la centrifugacion y de la ultracentrifugación.

Se coloca la mezcla en un aparato que la haga girar a velocidad angular constante muy elevada.

Una vez está girando, la mezcla experimenta una aceleración centripeda que puede llegar a ser, en ultracentrifugadoras de laboratorio, unas 5.000.000 veces la aceleración de la gravedad.

Esta fuerza empuja a sedimentar, a distinta velocidad, a las partículas de distinta masa de la mezcla, creándose distintos estratos con las partículas de cada clase.

Este método es muy utilizado en biología y medicina.

Metodos de Separación de Mezclas «Inicio»

Cromatografia.

La respiración

La respiración

Todas las células necesitan tener energía para poder realizar todas sus funciones y esta energía se obtiene por medio del catabolismo realizado en la mitocondria.

En este proceso son degradadas moléculas complejas en otras mas simples ,así como la glucosa que es degradada a dióxido de carbono y agua con liberación de energía.

La respiración celular posee tres fases:

Glicolisis:

Consiste en la rotura del azúcar ,se da en el citosol mediante la rotura de una molécula de glucosa se obtienen dos moléculas de ácido pirúvico.Se produce una ganancia de 2 ATPy 2 transportadores de electrones NADP.

La glicolisis se divide en dos pasos :una la activación de la glucosa y producción de energía ,no se requiere energía.

Ciclo de Krebs :

Ocurre dentro de la mitocondria es una serie de reacciones cíclicas en las cuales los ácidos pirúvicos se desdoblen en dióxido de carbono y hay formación de ATP aquí hay una ganancia de 2 ATP y si se requiere oxigeno.

Cadena respiratoria o transportadora de electrones:

Los electrones transportados entran al sistema de transporte de electrones de la membrana interna mitocondrial.Aquí su energía es usada para subir el gradiente de iones de hidrógeno, así se produce la síntesis de 32 a 34moleculas de ATP.Al final del sistema se combinan 2 electrones con un átomo de oxigeno y 2 iones de hidrógeno para formar agua.

La fotosintesis

La fotosíntesis:

Es el conjunto de reacciones químicas mediante las cuales la energía solar se utiliza para sintetizar moléculas orgánicas de alta energía ,a partir de moléculas inorgánicas de bajo nivel de energía principalmente dióxido de carbono y agua.


Se la puede dividir en dos etapas:

Etapa luminosa o fotoquímica ;ocurre dentro de los cloroplastos en el tilacoide.

El proceso comienza comienza cuando la luz excita a la clorofila y los electrones pasan de un nivel de baja energía a otro mas alto ,esos electrones son reemplazados por moléculas de agua que al ocurrir la fotolisis expulsan oxigeno y como resultado se forma ATP.

Resultado : la energía luminosa se transforma en energía química :ATP y NADH.


Etapa oscura o no fotoquímica:

Ocurre dentro de los cloroplastos dentro del Estroma.

Este proceso se inicia con una serie de reacciones cíclicas por medio de las cuales el dióxido de carbono se fija en los carbohidratos en forma independiente de la luz a estas reacciones cíclicas se las conoce como el ciclo de Calvin.Se reduce el dióxido de carbono mediante ATP y NADPH formándose glucosa y otros compuestos orgánicos.

Resultado :La energía química del ATP y NADPH se utiliza para la síntesis de glucosa.

El puente de hidrógeno

 

El puente de hidrógeno

El puente de hidrógeno es un enlace que se establece entre moléculas capaces de generar cargas parciales.

El agua, es la sustancia en donde los puentes de hidrógeno son más efectivos, en su molécula, los electrones que intervienen en sus enlaces, están más cerca del oxígeno que de los hidrógenos y por esto se generan dos cargas parciales negativas en el extremo donde está el oxígeno y dos cargas parciales positivas en el extremo donde se encuentran los hidrógenos.

La presencia de cargas parciales positivas y negativas hace que las moléculas de agua se comporten como imanes en los que las partes con carga parcial positiva atraen a las partes con cargas parciales negativas.

De tal suerte que una sola molécula de agua puede unirse a otras 4 moléculas de agua a través de 4 puentes de hidrógeno. Esta característica es la que hace al agua un líquido muy especial.

Enzimas tienen PH

Las enzimas tiene ph y temperatura óptimos

Las enzimas tienen una configuración nativa dada por fuerzas estabilizadoras.

Cualquier factor externo que altere esas fuerzas modificará la actividad.

La temperatura y ph óptimo varían para hacer que la estructura del sitio activo sea más adecuada para la catálisis.

Complejo ES:

La conversión de los sustratos en productos ocurre en el sitio activo de la enzima .

El complejo que se forma cuando S y la enzima se combinan se llaman complejo enzima-sustrato. «ES»

Entre la unión del sustrato a la enzima por la reaparición de enzimas libre por productos se producen una serie de pasos.

E + S <—->ES <—-> EP <—-> E + P

La cantidad de producto formado a partir de una determinada concentración de sustrato y de enzima seria con el tiempo solamente en las primeros minutos de la reacción lineal entre el producto formado y el tiempo..

KM las unidades Km son unidades de concentración, usualmente molaridad  KM puede definirse como  la   [ S ] a la que la enzima alcanza la mitad de su velocidad máxima o [ S ] a la que 1/2 de las moléculas de enzimas están formando ES.

En condiciones definidas de PH y temperatura, los valores de KM y velocidad máxima son las constantes cinéticas de una determinada enzima frente a su sustrato

Enzimas: Parte I, Parte II, Parte III, Parte IV